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ABSTRACT 

Using results in bifurcation theory, we show the existence of periodic solu- 
tions of a large class of non-Lagrangian systems of the form 

u" + Air' + Blu + F1 (w, w', w") = 0 

v" + A2u' + Bzv + F2 (w, w', w") = 0 

where w = (u, v). 

1. Introduction 

New variational techniques for the study of periodic solutions of the system of 

nonlinear differential equations w" + Bw + F(w) = 0 were introduced by M. S. Berger 

[1]. These have since been used by Berger himself [2] and by others [3]. In [9] 

the author extended these methods and proved the existence of periodic solutions 

of Euler-Lagrange systems of the form w" + Aw' + Bw + F(w, w', w") = 0. This 

proof depends rather strongly on the Lagrangian nature of the system. In 

this paper we consider the not necessarily Lagrangian system 

u" + A l v '  + Blu + Fl(w, w', w") = 0 

V" + A2u' + Bzv + F2(w , w' w") = 0 

where w = (u, v), under hypotheses replacing those of our other work. With these 

hypotheses, using Berger's techniques and recent results in bifurcation theory, 

we prove the existence of a one-parameter family of nontrivial periodic solutions 

w~(t) of period 2n2(/5) such that w~(t) ~ 0 and 2rc2(/5) ~ 2rc2 x as ~ ~ 0 where 2rffq is 

the period of the periodic solution of the linearized system. 
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2. Second order syste:ns 

We shall be concerned with the existence of families of  periodic solutions for 

autonomous systems of  ordinary differential equations of  the form 

(1) w" + Aw' + Bw + F(w, w', w") = 0 

where w denotes the n vector (wa(t), ...,w,(t)) of  real-valued functions, 

w' = (dw I /dt , . . . ,  dw,/dt), 

A and B are real n x n matrices and F is a C I (continuousIy differentiable) 

function of  3n variables with 

F(0) = 0 and F'(0) = 0. 

We assume that A and B are of the special form 

A - - (  0 A I )  

A2 0 

B = ( B ~  O )  

0 B2 

where A 1 is a q x r matrix, A 2 a n  r x q matrix, B1 a nonsingular r x r matrix, 

and B 2 a q x q  matrix with 0__<q<n and 0 < r < n .  Thus i f  

w - -  ( u ,  v)  - -  . . . ,  vq), 

system (1) can be written as 

(2) u" + Alv '  + Blu + F~(u,v,u' ,v ' ,u",v") = O, 

(3) v" + A2u' + B2v + Fz(u  , v, u ' ,  v ' ,  u", v") : 0. 

Let us further assume 

t t !  ! t t t  H FI(u, - v, - u ' ,v  ,u , -  v") = F~(u,v,u ,v ,u ,v ) 

and 

Fz(U, - v, - u' ,v ' ,u", - v") = - F2(u,v,u' ,v ' ,u",v" ). 

This situation can arise when, for example, F is the gradient of an even function 

of v,u '  and v". 

For  subsequent use we adopt the following conventions. Let X be a Banach 

space. For  any operator T(2, x) mapping a subset of  R • X into X,  we say 2 ~ R 

is an eigenvalue of  T if there exists a nonzero vector x ~ X, called an eigeuvector 
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such that T(2, x) = x. When X = R n and for each fixed 2, T(). x) = T(2)x is a 

linear map, and d e t ( I -  T(2)) is a polynomial in 2, we define the algebraic 

multiplicity of an eigenvalue 2, to be the multiplicity of 2 as a root of the polyno- 

mial d e t ( I -  T(2)) and the geometric multiplicity to be the dim N ( I -  T(2)), 

where N( ) denotes the null space. The range of T will be denoted by R(T). 

By letting xl = w and x2 = w', considering the system 

X; = X 2 

x'2 = - BxI - Ax2, 

and using standard results from the theory of ordinary differential equations 

[3], one can readily verify that the linearized equation 

(4) w" + Aw' q- Bw = 0 

has a periodic solution w(t) of period 2rGo, 2o positive, if and only if2o is a positive 

eigenvalue of the matrix operator 22B + i2A. 

There is a relationship between the periodic solutions of (2), (3) and those of (4). 

THEOREM 1. Suppose 22B + i2A has N different positive eigenvalues 21, ... , 2~, 

satisfying 21/2j = integer (j  = 1, . . . ,N) .  Suppose further that the algebraic 

multiplicity of each o.f these eigenvalues is equal to the geometric multiplicity 

and the sum of the multiplicities of these eigenvalues is odd. Then (2), (3) has a 

one-parameter fami ly  of nontrivial periodic solution w~(t) = (u~(t), v~(t)) with 

period 2rG(6) such that w6(t ) ~ 0 and 2zr2(6) ~ 2rc21 as 6 ~ O. 

THEOREM 2. I f21 iS a positive simple eigenvalue of 22B + i2A and there are 

no other positive eigenvalues 2 satisfying 2 t /2  = integer, then (2), (3) has a 

one-parameter fami ly  of nontrivial periodic solutions w~(t) = w(6, t) of period 

2~2(6) such that w(6, t) --> 0 and 2~2(6) --* 2rc21 as 6 ~ O. The functions w(6, t) and 

2(3) are continuous in ~5 and t and are real analytic or m - 1 times continuously 

di~erentiable as F is real analytic or m times continuously differentiable. 

These theorems will be proved in Section 3 by the variational techniques 

developed by Berger [1] and the following results of bifurcation theory. 

THEOREM 3. Let X be a Banach space and L a bounded linear map of X 

into X,  with an eigenvalue 20 such that I - 2oL is a Fredholm operator of index 

zero, R(1 - 2oL ) r~ N(I  - 2oL ) = {0} and dim N(I  - 2oL ) in odd. Suppose T is 

a C l map of a neighborhood of (20, O) e ~ x X into X such that T(2, 0) =- 0. 

T~(2,0) = 0  and Ta(2,x ) = o([[x[I ) uniformly for  2 near 2 o. Then 2 o is a 
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bifurcation point of the equation x = 2Lx + T(2, x). Moreover if 2o is a simple 

ei#envalue, then the bifurcatin9 solutions of the equation are of the form 

(2(8), x(e)) for ~ in an interval about zero, where (2(8),x(e)) is continuous and 

real analytic or in C m-1 as T is real analytic or in C m. 

For a proof of this theorem we refer the reader to [8]. 

3. Proof of Theorems 1 and 2 

Following Berger [1] we introduce a change of variables and set t = 2s where 

2 is a real constant to be determined. The resulting system is then 

(5) co" + 2Ato' + 22Bo9 + 22r(2, o)) = 0 

where 

Jr 09) = (JOl(2 , co), J02(2 , co)) = (Fx(~o , 2-  ~o', 2-  2co"), F2(o9, 2-  ~r.o', 2-  2oj")) 

and co = (/~,v)= (#l , '" , t~, ,vl , '" ,v~).  It suffices to determine the 2n periodic 

solutions of (5) as they correspond to the 2n2 periodic solutions of (2), (3). 

Even 2~r periodic functions are of the form # =/~o +/~*, where/~o is of mean- 

value zero, that is, l/2rcy~"lao(s)ds = 0 and/.t* is equal to the mean value of/~. 

Thus (5) can be written in the form 

(6) Bx#* + ~-n Px(2, po(S) +/~*, v(s)) ds = 0 

(7) 
+ + + + : ,  v) - + , * . v ( s ) ) a s ]  = o  

(8) v" + 2A2#~ + 22[B2 v + JO2 (2,/Zo + #*, v)] = 0. 

To apply Theorem 3 we introduce the appropriate Banach spaces. Let c~ x be 

the Banach space of twice continuously differentiable, 2n periodic, even r-vector 

functions of mean value zero with the usual supremum norm and ~'2 the Banach 

space of twice continuously differentiable, 2n periodic, odd q-vector functions 

with the supremum norm. Then set ~' = ~'a x cg 2. Let Ha be the Hilbert space of  

absolutely continuous, 2re periodic, even r-vector functions of  mean value zero 

such that 2~ , 2 So (po(S)) ds < ~ and H2 the Hilbert space of absolutely continuous, 

2n periodic, odd q-vector functions such that S2~(v ' (s))2ds < o0. Let H = H  t x H 2 

with inner product defined by (x, y )  = S2~x'(s) �9 y'(s)ds, x = (Izo, v). And lastly 

let X* be the space of the #* with Euclidean norm. 
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Finding solutions of (6), (7), (8) is therefore equivalent to finding solutions of 

the operator equations 

1 fO 27t Blp* + ~ ~1(,~, x(s) + p*)ds = 0 

X - -  / L ~ X  - -  / L 2 ~ X  - -  / L 2 ~ - ( 2 ,  X "-~ ~ * )  = 0 

in (5 x X*) r (H x X*) where d ,  ~ and ~" are defined implicitly by 

fo 2. fo 2. (affx, y )  = Ax'(s)" y(s)ds, ( ~ x ,  y )  = Bx(s)" y(s) ds, 

and 

fO 2Tt (~ (2 ,  x + p*), y )  = F(2, x(s) + #*). y(s)ds. 

Since a,r g ,  and ,~ satisfy the equations doffx/ds = - Ax, d2~x /ds 2 = - Bx 

and 0:~-(;t,x + p*)/0s 2 = - /e(2,x + #*), an application of the Ascoli-Arzela 

theorem will verify that d and ~ are compact maps of c~ into cr and that (.~, 

j'o ~rl) is a continuously differentiable nonlinear map of • x (re x X*) 1/2n 2~,~ 

into ~ x X* satisfying the hypotheses of Theorem 3. 

By hypothesis, B 1 is nonsingular. Hence by the implicit function theorem 

[4, p. 194], [8] there exists a C 1 funct ionf  such that 

1 fo Bl f (2 ,x )  + ~ /r + f(2,x(s))ds - 0  

for (2, x) near (20, 0). In addition f ~  C m or real analytic as F ~ C m or real analytic. 

Thus it suffices to find solutions of 

(9) x = 2s4x + 22~x + 22:~(2,x + f(2,x)) .  

As (9) does not satisfy the hypotheses of Theorem 3 we consider instead the system 

(10) z = 2Lz + T(,~, z) 

where z = (y, x) E ~ x ~' and 

(0 ~ 0 ) 
L = and T(2, z) = T()., y x) = 

5(; t ,  x + f(2, x)) " 

Clearly any solution of (10) will give us a solution of (9) and conversely, any 

solution of (9) gives a solution of (10). Thus to complete the proof it suffices to 

show that L satisfies the hypotheses of Theorem 3. 
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I f  2k is a l~ositive eigenvalue of  22B + i2A, 21/2k is an integer, and (a + ib, 

c + id) with a, b e W a r ,  d c, d e ~ is an eigenvector corresponding to 2k, then by 

equat ing components  we have the equalities 

22Bla - 2kAld = a 

22kBzd + 2kA2a = d 

22Bib + 2kalc = b 

22kB2 c -- ).kA2 b = C. 

Hence N(I 22 B -  iAkA) is the span of  vectors of  the fo rm (an~ { :'~ tJ)x where - -  ~Unk 1 

n = ~ /2k  and j = 1,---, rk, rk the multiplicity of  2k. Thus  by s tandard results 

f rom the theory o f  ordinary differential equations [3], the set 

{ (a~  ~ co~ n~s, d 2 ~ i ~  ,~s))}, j = 1,.-- r~, k = 1, . . . ,  N 

is a basis o f  N(1 - 2x~r - 22~).  Consequent ly  

N 

d i m N ( I  - ;qL)  = d i m N ( I  - ) .~ r  - 2~&) = E d i m N ( I  - 2~B - i2jA) 
j = l  

is odd and is equal to one if 21 is as in Th.~are:n 2. 

N o w  we show R(I - ~IL) c~ S ( t  - ~ L )  = {0}. Let E = { ,q/~1,  " " ,  ,q / ,b , } .  

Suppose z = ( y , x ) e ~  x c~ and (I - Z l L ) z ~ N ( I - ~ . I L  ). Then y = ct + fl and  

/V 

~ =  
j = l  

m = 2  

N 

~ , =  E 
j = l  

m = 2  

x = y + 6 w h e r e  

(aj cos njs, a] sin njs), for  nj e E 

(bmcosms, b" sinms), for  rn(EE 

(c a cos njs, c'j sin njs), for  n ~ E 

(din cos ms, d ' s i n  ms), for  m r E. 

Since I - 21L: (( a cos ms, b sin ms), (c cos ms, d sin ms)) ~ ( (a 'cos  ms, b 's in  ms), 

(c 'cos ms, d 's in  ms)) for  m = 1,2, ..., it follows that  

(I  - 21L)(fl,6) = 0. 

On  the other  hand (I  - 21L ) (a, y) e N(1 - 21L) and (I  - 21L) (~, y) ~ 0 implies 

tha t  
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(I -- 21Qj)(aj, ia), c j, ic'j) ~ N( I  - 21Q j) 

and 

where 
(I - 21Q~)(a~, iaf, c.i, icj) ~ 0 

0 n f2B  ) 

QJ = I in~ I A 

j = 1,...,N. However this is impossible by our hypotheses. 

Indeed, since d e t ( I - 2 1 Q j ) =  d e t ( I - 2 ~ B -  i2jA) the algebraic multiplicity of 

21 equals its geometric multiplicity. Hence by the Jordan canonical form of Qj it 

readily follows N(I  - 21Q j) n g ( I  - 2 1 Q  j) = {0}. 

Now we verify I - 21L is a Fredholm operator on c~ x ~. To show R(I  - 21L ) 

is closed, it suffices to prove it maps bounded, closed sets into closed sets [5, p. 99]. 

Suppose D is a bounded closed set and 

{(I - ;.tL)z.} = {(y~ - ,q~x., x~ - ,q(~'x~ + y~))} 

is a Cauchy sequence. By compactness there is a subsequence such that {21~x,} 

and {21~r are Cauchy sequences and therefore Yn ~ Y. This in turn implies 

{xn) is a Cauchy sequence and x n ~ x .  Thus by continuity ( l - 2 1 L ) z ~  

(I - 21L) (y , x  ). 

Next we show that I - 21L is of index zero. A simple computation will verify 

that the operator 

( 0  / ) 
L * =  ~ .  ~r 

is the adjoint of L, where ~t* and ~r are the adjoints of& and ~1. By the Fredholm 

alternative theorem [7, p. 219] 

dim N(I  - 21L ) = dim N(I  - 21(~1 + 21~)) 

= dim N(I  - 21(~1" + 21 &*)) = dim N(I  - 21L* ). 

Thus as we have verified that (10) satisfies the hypotheses of Theorem 3, 

Theorems 1 and 2 follow from Theorem 3. 

REMARK. Suppose (1) has the form 

(11) w" + Bw + F(w,w' ,w")  = 0 

where B is a nonzero n x n matrix and F ( -  w, w', - w") = - F(w, w', w"). Then 
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if cg and H are replaced by c~ 2 and H2 the p roof  o f  Theorems 1 and 2 will show 

that  these theorems are also true for the system (11). 
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